Skip to main content
Log in

Osteoblasts subjected to spaceflight and simulated space shuttle launch conditions

  • Articles
  • Cell Growth/Diffferentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

To understand further the effects of spaceflight on osteoblast-enriched cultures, normal chicken calvarial osteoblasts were flown aboard shuttle flight STS-77, and the total number of attached cells was determined. Spaceffight and control cultures were chemically fixed 3 h and 3 d after launch. These fixed cultures were processed for scanning electron microscopy (SEM). The SEM analysis showed that with just 3 d of exposure to spaceflight, coverslip cultures contained 300±100 cells/mm2, whereas 1G control samples contained a confluent monolayer of cells (2400±200 cells/mm2). Although the cultures flown in space experienced a drastic decline in cell number in just 3 d, without further experimentation it was impossible to determine whether the decline was a result of microgravity, the harsh launch environment, or some combination of these factors. Therefore, this research attempted to address the effect of launch by subjecting osteoblasts to conditions simulating shuttle launch accelerations, noise, and vibrations. No differences, compared with controls, were seen in the number of total or viable cells after exposure to these various launch conditions. Taken together, these data indicate that the magnitude of gravitational loading (3G maximum) and vibration (7.83G rms maximum) resulting from launch does not adversely affect osteoblasts in terms of total or viable cell number immediately, but launch conditions, or the microgravity environment itself, may start a cascade of events that over several d contributes to cell loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bikle, D. D.; Halloran, B. P. The response of bone to unloading. J. Bone Miner. Metab. 17:233–244: 1999.

    Article  PubMed  CAS  Google Scholar 

  • Caillot-Augusseau, A.; Lafage-Proust, M.-H.; Soler, C.; Pernod, J.; Dubois, F.; Alexandre, C. Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight. Clin. Chem. 44:578–585; 1998.

    PubMed  CAS  Google Scholar 

  • Carmeliet, G.; Bouillon, R. The effect of microgravity on morphology and gene expression of osteoblasts in vitro. FASEB J. 13:S129-S134; 1999.

    PubMed  CAS  Google Scholar 

  • Carmeliet, G.; Nys, G.; Bouillon, R. Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J. Bone Miner. Res. 12:786–794; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet, G.; Nys, G.; Stockmans, I.; Bouillon, R. Gene expression related to the differentiation of osteoblastic cells is altered by microgravity. Bone 22:139s-143s; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Collet, P.; Uebelhart, D.; Vico, L.; Moro, L.; Hartmann, D.; Roth, M.; Alexandre, C. Effects of 1- and 6-month spaceffight on bone mass and biochemistry in two humans. Bone 20:547–551; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, J.; Hughes-Fulford, M. Gravitational loading of a simulated launch alters mRNA expression in osteoblasts. Exp. Cell Res. 228:168–171; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Forkheim, K. E.; Schenker, E. B. Microgravity induced osteoporosis study on STS-80 space flight. Gravit. Space Biol. Bull. 12:58; 1998.

    Google Scholar 

  • Gerstenfeld, L. C.; Chipman, S. D.; Glowacki, J.; Lian, J. B. Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev. Biol. 122:49–60; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Guignandon, A.; Genty, C.; Vico, L.; Lafage-Proust, M.-H.; Palle, S.; Alexandre, C. Demonstration of feasibility of automated osteoblastic line culture in space flight. Bone 20:109–116; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Guignandon, A.; Lafage-Proust, M.-H.; Usson, Y.; Laroche, N.; Caillot-Augusseau, A.; Alexandre, C.; Vico, L. Cell cycling determines integrinmediated adhesion in osteoblastic ROS 17/2.8 cells exposed to spacerelated conditions. FASEB J. 15:2036–2038; 2001.

    PubMed  CAS  Google Scholar 

  • Harris, S. A.; Zhang, M.; Kidder, L. S.; Evans, G. L.; Spelsberg, T. C.; Turner, R. T. Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression. Bone 26:325–331; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Holick, M. F. Perspective on the impact of weightlessness on calcium and bone metabolism. Bone 22:105S-111S; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Fulford, M.; Lewis, M. L. Effects of microgravity on osteoblast growth activation. Exp. Cell Res. 224:103–109; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Fulford, M.; Tjandrawinata, R.; Fitzgerald, J.; Gasuad, K.; Gilbertson, V. Effects of microgravity on osteoblast growth, Gravit. Space Biol. Bull. 11:51–60; 1998.

    PubMed  CAS  Google Scholar 

  • Kaplansky, A. S.; Durnova, G. N.; Burkovskaya, T. E.; Vorotnikova, E. V. The effect of microgravity on bone fracture healing in rats flown on Cosmos-2044. Physiologist 34:S196-S199; 1991.

    PubMed  CAS  Google Scholar 

  • Landis, W. J.; Hodgens, K. J.; Block, D.; Toma, C. D.; Gerstenfeld, L. C. Spaceflight effects on cultured embryonic chick bone cells. J. Bone Miner. Res. 15:1099–1112; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M. L.; Reynolds, J. L.; Cubano, L. A.; Hatton, J. P.; Lawless, B. D.; Piepmeier, E. H. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J. 12:1007–1018; 1998.

    PubMed  CAS  Google Scholar 

  • Luttges, M. W. Recognizing and optimizing flight opportunities with hardware and life sciences limitations. Trans. Kans. Acad. Sci. 95:76–86; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, A.; Shigematsu, T.; Fukunaga, T.; Kawakami, K.; Mukai, C.; Sekiguchi, C. Medical baseline data collection on bone and muscle change with space flight. Bone 22:79S-82S; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Rittweger, J.; Gunga, H. C.; Felsenberg, D.; Kirsch, K. A. Muscle and boneaging and space. J. Gravit. Physiol. 6:P133-P136; 1999.

    PubMed  CAS  Google Scholar 

  • Roberts, W. E.; Fielder, P. J.; Rosenoer, L. M. L.; Maese, A. C.; Gonsalves, M. R.; Morey, E. R. Nuclear morphometric analysis of osteoblast precursor cells in periodontal ligament, SL-3 rats. Am. J. Physiol. 252:R247-R251; 1987.

    PubMed  CAS  Google Scholar 

  • Roberts, W. E.; Mozsary, P. G.; Morey, E. R. Suppression of osteoblast differentiation during weightlessness. Physiologist 24:S75-S76; 1981.

    Google Scholar 

  • Robling, A. G.; Hinant, F. M.; Burr, D. B.; Turner, C. H. Shorter more frequent mechanical loading sessions enhance bone mass. Med. Sci. Sports Exerc. 34:196–202; 2002.

    Article  PubMed  Google Scholar 

  • Rubin, C.; Turner, A. S.; Muller, R.; Mittra, E.; McLeod, K.; Lin, W.; Qin, Y. X. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J. Bone Miner. Res. 17:349–357; 2002.

    Article  PubMed  Google Scholar 

  • Sibonga, J. D.; Zhang, M.; Evans, G. L.; Westerlind, K. C.; Cavolina, J. M.; Morey-Holton, E.; Turner, R. T. Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone 27:535–540; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M. Vibrational force alters mRNA expression in osteoblasts. FASEB J. 11:493–497; 1997.

    PubMed  CAS  Google Scholar 

  • Turner, C. H. Three rules for bone adaptation to mechanical stimuli. Bone 23:399–407; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Turner, R. T. Invited review: what do we know about the effects of spaceflight on bone? J. Appl. Physiol. 89:840–847; 2000.

    PubMed  CAS  Google Scholar 

  • Vajda, E. G.; Wronski, T. J.; Halloran, B. P.; Bachus, K. N.; Miller, S. C. Spaceflight alters bone mechanics and modeling drifts in growing rats. Aviat. Space Environ. Med. 72:720–726; 2001.

    PubMed  CAS  Google Scholar 

  • Vico, L.; Lafage-Proust, M.-H.; Alexandre, C. Effects of gravitational changes on the bone system in vitro and in vivo. Bone 22:95S-100S; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Zerath, E. Effects of microgravity on bone and calcium homeostasis. Adv. Space Res. 21:1049–1058; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Zerath, E.; Holy, X.; Roberts, S. G.; Andre, C.; Renault, S.; Hott, M.; Marie, P. J. Spaceflight inhibits bone formation independent of corticosteroid status in growing rats. J. Bone Miner. Res. 15:1310–1320; 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa A. Kacena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kacena, M.A., Todd, P. & Landis, W.J. Osteoblasts subjected to spaceflight and simulated space shuttle launch conditions. In Vitro Cell.Dev.Biol.-Animal 39, 454–459 (2003). https://doi.org/10.1290/1543-706X(2003)039<0454:OSTSAS>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2003)039<0454:OSTSAS>2.0.CO;2

Key words

Navigation